

TD M5 – Moment cinétique

D.Malka – MPSI 2015-2016 – Lycée Saint-Exupéry

M1-Vitesse de rotation en patinage artistique

Sachant que le moment d'inertie d'un solide par rapport à un axe est d'autant plus grand que la masse du solide est éloigné de l'axe, expliquer les variations de la vitesse de rotation des patineurs que montre la vidéo :

http://www.dailymotion.com/video/xcbf6a_brian-et-philippe_sport

M2-Pendule de torsion

On considère le pendule de torsion représenté fig.1. Ce type de pendule est constitué d'une tige horizontale de longueur $2L=40\,cm$ dont les extrémitées sont lestées par deux boules identiques de masse $m=1\,kg$ et de rayon $a=3\,cm$. Cette tige est suspendue par un fil métallique très fin d'axe Δ . Si on tourne la tige d'un angle θ autour de Δ , la torsion du fil engendre un couple de rappel qui vaut $-C\theta\vec{e}_z$.

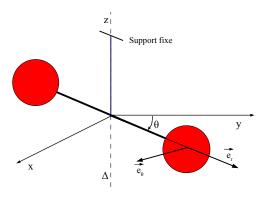


FIGURE 1 – Pendule de torsion

Moment d'inertie du pendule par rapport à Δ : $J=2m\left(L^2+\frac{a^2}{5}\right)$.

En appliquant le théorème du moment cinétique par rapport à Δ et en exploitant la figure 2, déterminer la constante de torsion C du pendule. On négligera les frottements.

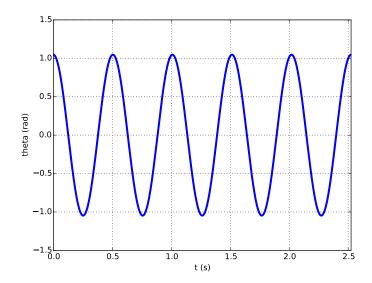


Figure 2 – Oscillations du pendule

M3-Pendule conique

On s'intéresse au problème du pendule conique. Une tige mince, homogène, de masse m, de longueur L, est mise en rotation autour de l'axe Oz à la vitesse angulaire ω (fig.3) par un moteur. L'expérience montre qu'au delà d'une valeur seuil de ω_c , le pendule s'écarte de l'axe Oz d'un angle α . Dans ce problème, on recherche la valeur seuil ω_c et la dépendance de α avec ω en appliquant le théorème du moment cinétique par rapport à O_1 . On se placera dans le référentiel $\mathcal R$ tournant autour de Oz avec la tige. Le moment d'inertie de la tige par rapport à Oz s'écrit : $J=\frac{1}{3}mL^2$.

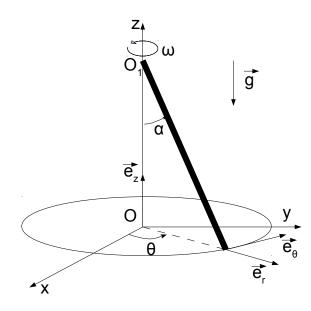


Figure 3 – Le pendule conique

- 1. Le moteur est à l'arrêt.
 - $1.1\,$ Donner les coordonnées du centre de masse G de la tige.
- 1.2 La tige ne pouvant que tourner d'un angle α dans le plan $(O_1, \vec{e_r}, \vec{e_z})$, déterminer l'équation du mouvement de la tige et mettre en évidence une pulsation caractéristique ω_0 du pendule.

- 2. Le moteur est en marche. Dans le référentiel \mathcal{R} , il existe une pseudo-force $\overrightarrow{dF}_{ie} = \frac{m}{L} \, dl \, \omega^2 r \vec{e_r}$ s'exerçant sur chaque portion dl de la tige.
 - 2.1 Montrer que le moment par rapport à O_1 de la force \overrightarrow{F}_{ie} sur la tige s'écrit :

$$\overrightarrow{\mathcal{M}}_{ie,O_1} = -\frac{mL^2}{3}\omega^2 \cos\alpha \sin\alpha \vec{e_\theta}$$

- 2.2 Déterminer l'équation d'évolution de $\alpha(t)$ et montrer que pour $\omega > \omega_c$ (ω_c à déterminer), il existe une position d'équilibre $\alpha_{eq} \neq 0[\pi]$ dont on admettra qu'elle est stable.
- 2.3 Quel est le lien entre α_{eq} , ω_c et ω ?
- 2.4 Représenter alors graphiquement α_{eq} en fonction de ω .